""" MATRICES se pueden considerar como listas de listas lo visto en listas aplica tambien en matrices """ # Definción de matriz de 3 filas y 4 columnas. matriz = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] # Acceso a elementos matriz[ fila o lista1 ] [ columna o lista2 ] matriz[0][0] # 1 matriz[1][2] # 7 # Ejm. suma de matrices def suma_matr(A, B): """ Suma 2 matrices. A: len(A) == len(B), integers. B: len(A) == len(B), integers. returns: Matriz con resulta de la suma de los elementos de A y B """ filas, colums, C = len(A), len(A[0]), [] for fila in range(filas): fila_temp = [] for columna in range(colums): fila_temp.append(A[fila][columna] + B[fila][columna]) C.append(fila_temp) return C print(suma_matr(matriz, matriz)) # LIBRERIA NUMPY PARA TRABAJAR CON MATRICES # CONJUNTOS # Un conjunto esta entre llaves no tiene elementos repetidos. frutas = {'manzana', 'naranja', 'manzana', 'pera', 'naranja', 'banana', 'kiwi'} print(frutas) #{'kiwi', 'naranja', 'manzana', 'banana', 'pera'} print('pera' in frutas, 'yerba' in frutas) # True False # Creacion de conjuntos: conj_a = set() type(conj_a) # a = set('abracadabra') #{'r', 'a', 'b', 'd', 'c'} b = set('alacazam') #{'l', 'm', 'a', 'z', 'c'} print('\n a =',a ,' b =',b) # Operaciones de conjuntos: a - b # {'d', 'b', 'r'} elementos de a menos elementos de b a | b # {'l', 'd', 'a', 'z', 'm', 'c', 'b', 'r'} elementos de a y b a & b # {'c', 'a'} elementos en común (INTERSECCION) a ^ b # {'l', 'z', 'b', 'm', 'd', 'r'} elementos únicos de cada set # Comprensión de conjuntos: a = {x for x in 'abracadabra' if x not in 'abc'} a.add('z') a.remove('z') print('\n', a) #{'r', 'd'} ''' >>>help(set) Help on class set in module builtins: class set(object) | set() -> new empty set object | set(iterable) -> new set object | | Build an unordered collection of unique elements. | | Methods defined here: | add(...) | Add an element to a set. | | This has no effect if the element is already present. | | clear(...) | Remove all elements from this set. | | copy(...) | Return a shallow copy of a set. | | difference(...) | Return the difference of two or more sets as a new set. | | (i.e. all elements that are in this set but not the others.) | | difference(...) | Return the difference of two or more sets as a new set. | | (i.e. all elements that are in this set but not the others.) | | difference_update(...) | Remove all elements of another set from this set. | | discard(...) | Remove an element from a set if it is a member. | | If the element is not a member, do nothing. | | intersection(...) | Return the intersection of two sets as a new set. | | (i.e. all elements that are in both sets.) | | intersection_update(...) | Update a set with the intersection of itself and another. | | isdisjoint(...) | Return True if two sets have a null intersection. | | issubset(...) | Report whether another set contains this set. | | issuperset(...) | Report whether this set contains another set. | | pop(...) | Remove and return an arbitrary set element. | Raises KeyError if the set is empty. | | remove(...) | Remove an element from a set; it must be a member. | | If the element is not a member, raise a KeyError. | | symmetric_difference(...) | Return the symmetric difference of two sets as a new set. | | (i.e. all elements that are in exactly one of the sets.) | | symmetric_difference_update(...) | Update a set with the symmetric difference of itself and another. | | union(...) | Return the union of sets as a new set. | | (i.e. all elements that are in either set.) | | update(...) | Update a set with the union of itself and others. | | ---------------------------------------------------------------------- '''